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• Bipartition of two oscillator modes 1 and 2 with

• Positions 𝑥1, 𝑥2 and momenta 𝑝1, 𝑝2

• Global state 𝜌

• Local states 𝜌1 = 𝑇𝑟2 𝜌 , 𝜌2 = 𝑇𝑟1 𝜌

• Global state 𝜌	is entangled if and only if

𝜌 ≠ ∑! 𝑝𝑖 (𝜌"!⨂𝜌#! ), where 𝑝𝑖 is a probability distribution

• Goal: Measure 𝑥1,𝑥2, 𝑝1,𝑝2 and try to certify entanglement between 1 and 2 

 for as many states as possible

 → Entropic entanglement criteria

 → „Joint“ measurements

Big picture
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Outline

• Continuous variable systems and phase space

• Wehrl mutual information

• Inseperability criteria

• Comparison

• Stronger bounds and discretization (work in progress)
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Continuous variable systems and phase space

• Monopartite system, start from a set of conjugate variables

𝑋, 𝑃 = 𝑖	

• State has a representation in phase space 
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Continuous variable systems and phase space

• Extract information in phase space by measuring position and momentum

• Homodyne detection

• Project onto eigenstates ⟩|𝑥 , ⟩|𝑝

• Gives marginals 𝑓 𝑥 = 𝑥 𝜌 𝑥 , 𝑔 𝑝 = 𝑝 𝜌 𝑝

• Many (entropic) criteria existWalborn et al.´09

• Heterodyne detection

• Project onto pure coherent states ⟩|𝛼

• ⟩𝑎|𝛼 = 𝛼 ⟩|𝛼  with 𝛼 = (𝑥 + 𝑖	𝑝)/ 2

• Gives Husimi Q-distribution Q 𝑥, 𝑝 = 𝛼 𝜌 𝛼

• „Joint“ measurement of position and momentum 
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Continuous variable systems and phase space

• Husimi Q-distribution is

• non-negative and bounded 0 ≤ Q 𝑥, 𝑝 ≤ 1

• normalized ∫ &'	&)#* Q 𝑥, 𝑝 = 1

• a quasi-probability distribution as coherent states overlap

• We can associate an entropy to it, which is the Wehrl entropyWehrl´78´79. It

• is defined as 𝑆𝑊 Q = −∫ &'	&)#*
Q 𝑥, 𝑝 lnQ 𝑥, 𝑝

• is a coarse-grained entropy 𝑆𝑊 Q > 𝑆(𝜌)

• fulfills an entropic uncertainty relation (Wehrl-Lieb inequality) 𝑆𝑊 Q ≥ 𝑁, tight 
for all pure coherent statesLieb´78, Lieb and Solovej´14
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Wehrl mutual information

• General setup: bipartite system 1 and 2 with 𝑁 +𝑀 modes

• To capture correlations in phase space, we define Wehrl mutual information

   𝐼𝑊(1: 2) ≡ 𝑆𝑊(𝑄||𝑄1×𝑄2) = 𝑆%(𝑄1) + 𝑆% 𝑄2 − 𝑆% 𝑄

• Intuition for all involved quantities with Venn diagrams
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Wehrl mutual information

• If global state 𝜌 is pure, 𝐼𝑊(1: 2) = 0 is a necessary and sufficient condition 
for separability

 → Measurable analog of the positive partial transpose (PPT) criterion for 
     pure states and 𝑁 +𝑀 modes

• All pure entangled states are witnessed, e.g. N00N states for all N 

• 𝐼𝑊(1: 2) is neither an entanglement measure, nor an entanglement monotone 

• But, it is a lower bound on the entanglement entropyLieb and Seiringer´05

𝐼𝑊(1: 2) ≤
1
2 𝑆 𝜌1 =

1
2𝑆(𝜌2)

 → „How much are 1 and 2 entangled at least?“

• If global state 𝜌 is mixed, 𝐼𝑊(1: 2) also includes classical correlations
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Inseparability criteria

• To derive general inseparability criteria, we restrict to two modes 1 and 2

     with commutation relations 𝑋𝑗, 𝑃' = 𝑖	𝛿𝑗𝑘	 (𝑗, 𝑘 = 1,2)

• We allow for rotations in both phase spaces by introducing local angles	𝜗1, 𝜗2	

𝑅𝑗
𝑆𝑗

= cos 𝜗𝑗 sin 𝜗𝑗
−sin 𝜗𝑗 cos 𝜗𝑗

𝑋𝑗
𝑃𝑗

• Starting point: Global Husimi 𝑄(𝑟1, 𝑠1, 𝑟2, 𝑠2) 

• Note: No angle tomography needed!
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Inseparability criteria

• Transform to EPR-type variables

      𝑟± = 𝑟) ± 𝑟*, 𝑠± = 𝑠) ± 𝑠*

     and consider the two mixed marginal distributions

    𝑄± 𝑟±, 𝑠∓ = ∫ ,-	,/*0
𝑄 𝑟, 𝑠, ∓𝑟 ± 𝑟±, ±𝑠 ∓ 𝑠∓

• Note that 𝑅±, 𝑆∓ = 0 → Marginals are not „true“ Husimi Q-distributions, but 
still bounded and normalized to 1

• For pure separable states 𝜌 = 𝜌)⨂𝜌*, the global Husimi Q-distribution 
factorizes

    𝑄 𝑟1, 𝑠1, 𝑟2, 𝑠2 = 𝑄1(𝑟1, 𝑠1)×𝑄2(𝑟2, 𝑠2) 
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Inseparability criteria

• Mixed marginals become

    𝑄± 𝑟±, 𝑠∓ = (𝑄) ∗ 𝑄*
(±)) 𝑟±, 𝑠∓

     with 𝑄*
(±) = 𝑄*(±𝑟, ∓𝑠)

• Use 2D entropy power inequality together with invariance of entropies under 
mirror reflections

    𝑆(𝑄±) ≥ ln(𝑒3%(4&) + 𝑒3%(4'))

• Generalize weak criteria to mixed separable states

  𝜌 = ∑5 𝑝𝑖 (𝜌)5⨂𝜌*5 )
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and the Wehrl-Lieb inequality

≥ 1 + ln 2

strong criteria weak criteria

→  𝑄± 𝑟±, 𝑠∓ = ∑5 𝑝𝑖𝑄±5 𝑟±, 𝑠∓
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Inseparability criteria

• Use concavity of entropies

    𝑆 𝑄± ≥ ∑5 𝑝𝑖 𝑆(𝑄±5 )

 → Weak criteria generalize to mixed separable states

• We end up with

   𝑆(𝑄±) ≥ ln(𝑒3%(4&) + 𝑒3%(4'))    

 

• Violation of these inequalities flags entanglement
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and weak criteria

.≥ ∑5 𝑝𝑖 (1 + ln 2) = 1 + ln 2
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strong criteria 
for pure separable states

weak criteria 
for mixed separable states

𝑆 𝑄± ≥ 1 + ln 2
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Comparison

• Gaussians maximize entropies → we can infer second-order criteria

      𝜎-±
* + 𝑎* 𝜎/∓

* + 1/𝑎* ≥ 4 + 𝜎-±/∓
* ,

     where 𝑎 is the squeezing parameter

• Second-order criteria are invariant under rotations, but not under squeezing

• Complementary compared to MGVT criteriaMGVT´02 (implied by Walborn et al.) 

	 	 	 	 	 	 	  𝜎-±𝜎/∓ ≥ 1

• After appropriate optimizations the two are equivalent

• Entropic criteriaWalborn et al.´09 for homodyne marginals 𝑓 𝑟1, 𝑟2 , 𝑔 𝑠1, 𝑠2

     𝑆 𝑓± + 𝑆 𝑔∓ ≥ ln 𝑒𝜋 + ln 2
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Comparison

• Dephased Schrödinger cat state, pure iff 𝑧 = 0 and separable iff 𝛼 = 0 or 𝑧 = 1 

 𝜌 = 𝑁 𝛼 ⟩|𝛼, 𝛼 ⟨𝛼, 𝛼 + ⟩| − 𝛼,−𝛼 ⟨−𝛼,−𝛼 + 1 − 𝑧 ⟩|𝛼, 𝛼 ⟨−𝛼,−𝛼 + ⟩| − 𝛼,−𝛼 ⟨𝛼, 𝛼
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𝑧 𝑟/ 2

Picture taken from Walborn et al. ´09
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Stronger bounds and discretization

• Generalize to the family of Rényi-entropies 𝑆9 𝑄±  with 𝛽 ≠ 1

    𝑆9 𝑄± = )
):9

ln ∫ ,-±,/∓*0
𝑄±
9

• Even stronger witness as 𝛽 allows for optimization. Cat state from before:

• Discretize witness for application to experiments 𝑄± → 𝑞±

        𝑆9 𝑄± ≥ ;< 9
9:)

+ ln 2
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𝑆9 𝑞± + ln ∆-±∆/∓
*0

≥ 

≥
ln𝛽
𝛽 − 1

+ ln 2
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Summary

• For 𝑁 +𝑀 modes: Wehrl mutual information 𝐼𝑊(1: 2)	is a measurable perfect 
witness for pure state entanglement and a lower bound on the entanglement 
entropy 𝑆 𝜌1

• For 1 + 1 modes: Inseparability criteria in terms of a Wehrl entropy

       𝑆 𝑄± ≥ 1 + ln 2

• Does not require angle tomography

• Fully witnesses the mixed cat state, works best for large overlaps

• Stronger witness for Rényi entropies 𝑆9 𝑄±  

• Can be applied to experiments via discretized distributions

16Tobi Haas | Entropic entanglement criteria in phase space



Outlook

• Generalize to su(2) algebra: continuous Husimi Q, but compact phase space

     or other groups → universal approach to entropic entanglement witnessing!

• Generalize Husimi Q and Wehrl entropy to quantum field theory 

 → See also: Relative entropy formulation of entropic uncertainty for    
     quantum fields, arXiv:2107.07824
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Thanks for your attention!

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Tobi Haas | Entropic entanglement criteria in phase space



References

• Wehrl ´78: General properties of entropy, Rev. Mod. Phys. 50, 221 (1978)

• Wehrl ´79: On the relation between classical and quantum-mechanical entropy,  
    Reports on Mathematical Physics 16, 353 (1979)

• Lieb ´78: Proof of an entropy conjecture of Wehrl, Communications in   
       Mathematical Physics 62, 35 (1978)

• Lieb and Solovej ´14: Proof of an entropy conjecture for Bloch coherent spin states and 
       its generalizations, Acta Math. 212, 79 (2014)

• Lieb and Seiringer ´05: Stronger subadditivity of entropy, Phys. Rev. A 71, 062329 (2005)

• MGVT ´02: Entangling Macroscopic Oscillators Exploiting Radiation Pressure,  
    Phys. Rev. Lett. 88, 120401 (2002)

• Walborn et al. ´09: Entropic entanglement criteria for continuous variables,  
           Phys. Rev. Lett. 103, 160505 (2009)

18Tobi Haas | Entropic entanglement criteria in phase space

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.50.221
https://www.sciencedirect.com/science/article/pii/0034487779900703?via%3Dihub
https://link.springer.com/article/10.1007/BF01940328
https://link.springer.com/article/10.1007/BF01940328
https://projecteuclid.org/journals/acta-mathematica/volume-212/issue-2/Proof-of-an-entropy-conjecture-for-Bloch-coherent-spin-states/10.1007/s11511-014-0113-6.full
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.71.062329
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.120401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.160505


Backup slides

19Tobi Haas | Entropic entanglement criteria in phase space



Comparison

• Husimi Q is related to Wigner W via a Weierstrass transform w.r.t. vacuum

• Husimi covariance matrix fulfills 𝑉± = 𝛾± + 1 with 𝛾± =
𝜎-± 𝜎-±/∓
𝜎-±/∓ 𝜎/∓

• Behavior of second-order criteria under rotations (a)
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