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Big picture

« Consider N oscillator modes
« N positions x and N momenta p , |

* Measuring them gives the distributions Q -------- Q

N N X : p X : D
£ (%) = (x|plx) and g(p) = (plplp) 11 P N Dy
« Associated entropic uncertainty relation (EUR) reads

S(F) +5(g) =N +In7)

- Field theory limit N — oo renders all quantities infinite X

— Use relative entropies S(f||f,) instead

— Obtain finite results also in the field theory limit
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Outline

« Entropic uncertainty relation for a single oscillator
»  From oscillators to fields
* The relative entropic uncertainty relation

- Example: Excitations
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Flaws of standard deviation

EUR for a single oscillator| From oscillators to fields | The relative entropic uncertainty relation | Example: Excitations

- Let us start from Heisenberg‘s uncertainty relation
1
O0x0p = 5
+  What is wrong with using the standard deviations o, and g,,?¢cles etal. "7

« No information about other moments of f(x) = (x|p|x) and g(p) = (plplp)

« Behave counterintuitively: Consider particle € in boxes with L > a

. £ £
1. With walls: [ SO% =0 203 ] o, ~05L
Qrooesoese P = = = = e e e e e = = = - Peocccccsee >
a L a Vv
2. Without walls: LR IR TR LR o ~029L
. . e G x =0 aSs aSls X .
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Measuring ,,surprise
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*  Which properties should a good measure of uncertainty possess?Vedral ‘02

« Think in terms of ,,surprise®: Given an event x with probability density f(x),
how surprised are we when the event does occur?

Unlikely events
x with small 1
f(x) would f(x)
surprise a lot

Surprisals of
independent events x .
and y with probability — ~Inf(x)

density fCOXf(¥)  — —In(f(xX)Xf(y)) = —Inf(x) —In f(y)
should add up

« Surprise of event xis —In f(x)
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Differential entropy
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- We introduce differential entropy S(f) as the measure of average surprise /
uncertainty / missing information of a distribution f(x)

S(F) = = f dx f(x) Inf (x)

« Intuition: S(f) is small whenever the distribution f(x) is highly localized

f(x) f(x) f(x)
2 4

VA | |

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

S(H=142 > S(H=0 > S(f)=-0.88

— For continuous variables, e.g. position x or momentum p, entropies can be negative

— What happens when considering position x and momentum p?
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BBM Entropic uncertainty relation
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« Entropic uncertainty relation for position f(x) and momentum g(p) distributions
by Biatynicki-Birula and Mycielski (BBM)Biatynicki-Birula and Mycielski 75

S(H+S(g)=1+Inm

— Either entropy can become small or even negative, but their sum is bounded
from below by a positive number

« Stronger than Heisenberg‘s relationtertz and Cerf “19
« Q: Which distribution f(x) maximizes entropy S(f) for a given variance ¢2?
+ A: Gaussian /(x) = f¢(x) — S(f) < 5(fs) = 5In(2mec?)
* Hence, In(2neo,0,) = S(f) + S(g) = Inme = 0,0, 2%

« Applications: entanglement witnessesWalborn et al. ‘09 - steeringWalborn etal. 11
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Coupled oscillators and field theory limit
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* Toy model: Chain of N coupled modes in d = 1 + 1 dimensions

Collection of oscillators Limits

Continuum limit: e -5 0, N > o, L= N¢ =c.

N—
1 1 2 2
- EZ) d - ORI ) R 2| [ + @O+ m2(0)
- 0

Infinite volume limit: Ak - 0, N > o, ¢ =% =C.

Ak
— | +w2q,’>2 +% d
1772l +of0l] =g [ ) + @) ()

NIH

2)n 2

&

4 Akt
Wy = \/—sm ( e) + m? w(p) =/p? + m?

g2

* Field theory limit: continuum limit + infinite volume limit
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Schrodinger picture for quantum fields
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* Schrodinger picture: States are defined on constant time slices

t 4 t a pz
P1

—_—T X s m '

- Expand field operators as ®,|¢) = ¢,|¢) and I1,|m) = m,|m)
« In this basis, the density matrix elements read p[¢,,¢p_] = (¢, |plP_)
— Functional probability density F[¢] = p[¢, p] = (d|p|p)

« Expectation values can be obtained via functional integrals

(0()) = [ Do 0(¢) Fl¢p], D = Hefdcm\/ﬁ:';
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Vacuum and coherent states
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«  Vacuum wave functionals P[¢] and W[r] follow from Schrodinger‘s equation,
associated functional probability densities read

= — = -1 1 Ak Ak — _
Flp] = [9[¢]12 = Z " exp|= 25,55 Sm s b0 Mt 1,
= — = -1 1 Ak Ak — _
Gl = 1P[x]1? = Zy " exp |5 %o Bom'se e N T,
with normalization constants Z, = Ht,\/wz{),z_n = [1, Vo,

. . . — _ 2 —
and inverse covariance matrices M,,; = A—ZZw{)Sm, Nod = ==6m
4
* Acoherent state p = |a){a| can be obtained by displacing the vacuum, i.e.
1

Fol9) = Z " exp =380 3 Bm s (Ge—08) M (b — 2]

With ¢ = (r)a ,m§ = (mo)q and @, = = (F + inf)
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Problems in the field theory limit
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« For (discretized) theory with N € N modes the BBM relation readsHertz and Cerf *19
S[F]+S[G] = N + Inm),
where we introduced the functional entropy as
S[F]1=—J D¢ F[$] InF[¢]
« 15t observation: Right hand side scales with number of modes N

— Continuum limit and infinite volume limit, which both require N — oo,
lead to divergent bound

- 2nd observation: Independent of the state under consideration, the functional
entropy diverges in the field theory limit. For example, for the vacuum we obtain

SIF1=1nZy + [ dp 5(0) > o

Tobi Haas | Relative entropic uncertainty relation for scalar quantum fields 11



Functional relative entropy
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« Similar to divergence of vacuum energy expectation value
E = Tr{pH} =3[ dp (p) 6(0) >

— A physically reasonable notion of energy has to be formulated as a
difference with respect to the vacuum energy

« Can we define entropic uncertainty with respect to some reference state?

- Define functional relative entropy between F[¢] and some model distribution F[¢]

S[FIIF]1 = [ D¢ Fl¢] (InF[p] — InF[¢])
* not a true distance measure, but rather a divergence
* non-negative quantity being zero if and only if the two distributions agree

- has to be set to + if support condition supp(F) S supp(F) is violated
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Derivation of the REUR
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- Q: What reference model distribution F[¢] should we choose to describe
entropic uncertainty?

* Q: Which model distributions saturate the entropic uncertainty relation?

« A: Coherent distributions F,[¢], i.e. S[F,] + S[G,] = N(1 + Inm)

- E,[¢] maximizes the functional entropy S[F] for a given covariance matrix M
and field expectation value ¢y = (¢,),

« For any distribution F[¢] with covariance matrix M and field expectation value
@e = (¢,), we have

SIFIIE] = —S[F] + S[F] + > Tr {M~1(M — M)} + 25 ML s,

with s, = ¢, — ¢ = 0 for suitably chosen coherent model distribution
(,,optimal coherent model®)
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Derivation of the REUR
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- Plugging relative entropy S[F||F,] = —S[F] + S[F] + %Tr {M~Y(M — M)} w.r.t.

optimal coherent models into S[F] — S[F] + S[G] — S[G] = 0 we obtain our main
result, the relative entropic uncertainty relation (REUR)

S[F||F,] + S[G||G,] < Tr{]\/[ M -=M)+ NNV =)}

NN N\

Arbitrary quantum Optimal Upper bound for Bound contains only
field theoretic coherent sum of relative differences of covariance
density operator p models entropies matrices

— No explicit dependence on the number of modes N

— Non-trivial statement for entropic uncertainty also for quantum fields
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Example: Excitations
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Remember: a free scalar field is just a collection of harmonic oscillators!

« Create excitations / free particles by acting with creation operators on vacuum
state

V(¢ = [lies J—(\/T‘ *)k@[cpl, U = T (@4 = 50)

« This yields the functional probability density

FIg) = IWIA11 = [y c a2 (72) Flg]

« The covariance matrix of such a state is given by

= [ D¢ | beom e e i (72)| Flg] o 8o
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Example: Excitations
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» Using the orthogonality relations as well as recurrence relations of Hermite
polynomials, one can show that

for non-excited modes: My, = My, for ¢35
for excited modes: M,y = My (14 2n,) for €5

— the diagonal components of the vacuum covariance acquire an additive
term accounting for the excitations in the excited modes

« Using this result, we can compute the bound of the REUR for the discretized as
well as for the continuous theory

SIFIIF] + SIGIIG] < Ty e 5 2ny

— This result also holds in the field theory limit!
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Summary

We have presented a relative entropic uncertainty relation (REUR)
SIFIIE] + S[GNIGe] < STr {M~1(M — M) + N 7LV — V)

describing entropic uncertainty between a scalar field and its conjugate
momentum field with respect to optimal coherent states

The bound of this relation is independent of the number of modes N

All quantities are well-defined and finite in the field theory limit

We have demonstrated its properties by considering few particle excitations
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Outlook

*  Formulate other known entropic uncertainty relations in a field theory sense,
e.g., Frank and Lieb relation as well as Wehrl-Lieb inequality (work in
progress)

« Extend REUR to include (quantum) memory
« Use REUR to constrain entanglement in quantum field theories

— obtain criteria being capable of certifying entanglement between
spacetime regions?

» Study other field theories: fermions and gauge fields?

« Study interacting theories: perturbation theory and beyond?

Thank you for your attention!
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Example: Thermal state

EUR for a single oscillator| From oscillators to fields | The relative entropic uncertainty relation | Example: Thermal state

« The thermal density operator is given by p; = % e PH | the resulting functional
probability density is of Gaussian form

1 1 Ak Ak -1
Frlgl = o-exp (=5 Zo5n B b (MF) " bm)
with the thermal covariance matrix M}, = (1 + 2ngg(w;)) My,

The bound of the REUR reads

Ak
LY ,—ngr(wy) continuum limit
1o o _ ¢ - Npp(Wy
~Tr{M 1 (MT — M)} = e -
218(0) fEnBE(w(p)) infinite volume limit

— Consider relative entropy densities or finite volume
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Example: Thermal state
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* As thermal state is of Gaussian form, we can also calculate the LHS of the REUR
SIFIIF] + S[GrNIG] = L 3,55 [2ngg(wp) — In(1 + 2ng5(w;))]

and plot both sides

Uncertainty
SIFrlIF] + SIGTIIG]
0.5-
Bound
0.4-
0.3-
0.2-
0.1~
" v Buw
8 10 B
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